BMath III, Stat IV, Dec. 04, 2008, Final.

Answer any five of the six questions. All questions carry equal weight. Read the questions carefully.

1. Consider a multinomial population such that its probabilities $\pi_1 = \pi_1(\theta), ..., \pi_k = \pi_k(\theta)$ are known functions of the parameter θ where $\theta = (\theta_1, ..., \theta_q)$ is a q-vector, q < k - 1. Assume that we have sample of size n.

Let $\widehat{\boldsymbol{\theta}}_n$ be an estimator of $\boldsymbol{\theta}$ such that $\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right) - \left(M_{\boldsymbol{\theta}}'M_{\boldsymbol{\theta}}\right)^{-1}M_{\boldsymbol{\theta}}'\mathbf{V}_n \stackrel{p}{\to} 0$

where $M_{\theta} = \left[\frac{1}{\sqrt{\pi_j(\theta)}} \frac{\partial \pi_j(\theta)}{\partial \theta_s}\right]_{k \times q}$ (assumed to be of rank q), where

$$\mathbf{V}_{n}' = \left(\frac{N_{1} - n\pi_{1}\left(\boldsymbol{\theta}\right)}{\sqrt{n\pi_{1}\left(\boldsymbol{\theta}\right)}}, ..., \frac{N_{k} - n\pi_{k}\left(\boldsymbol{\theta}\right)}{\sqrt{n\pi_{k}\left(\boldsymbol{\theta}\right)}}\right)$$

with N_j = the number of times the jth outcome occurs in the sample, j = 1, ..., k..Let

$$\chi_n^2 = \sum_{j=1}^k \frac{\left(N_j - n\pi_j\left(\widehat{\boldsymbol{\theta}}_n\right)\right)^2}{n\pi_j\left(\widehat{\boldsymbol{\theta}}_n\right)}.$$

Show that when θ is the true parameter,

$$\chi_n^2 - \mathbf{V}_n' \left(\mathbf{I}_k - M_{\boldsymbol{\theta}} \left(M_{\boldsymbol{\theta}}' M_{\boldsymbol{\theta}} \right)^{-1} M_{\boldsymbol{\theta}}' \right) \mathbf{V}_n \stackrel{p}{\to} 0.$$

Show, when θ is the true parameter, that χ_n^2 converges in distribution to the $\chi^2(l)$ with l degrees of freedom. Find the degrees of freedom l.

(Here you may use the fact that when $V \sim \mathcal{N}\left(0, I_k - \phi \phi'\right)$, the quadratic V'CV under certain restrictions on C has a χ^2 distribution with a certain degrees of freedom)

2. Consider two multinomial populations, each with the same number of outcomes or cells, with respective cell probabilities $\pi_1 = (\pi_{11}, ..., \pi_{1k})$ and $\pi_2 = (\pi_{21}, ..., \pi_{2k})$. Suppose that it is known that $(\pi_{11}, ..., \pi_{1k}) = (\pi_1(\theta_a), ..., \pi_k(\theta_a))$ where $\theta_a = (\theta_{a1}, ..., \theta_{aq})$ and $(\pi_{21}, ..., \pi_{2k}) = (\pi_1(\theta_b), ..., \pi_k(\theta_b))$ where $\theta_b = (\theta_{b1}, ..., \theta_{bq})$. It is assumed that the functional forms of π_j 's are known, but θ_a and θ_b are unknown parameters. Thus the two populations are the same except for the difference in parameters θ_a and θ_b .

We want to test the null hypothesis

$$(\theta_{a1}, ..., \theta_{aq}) = (\theta_{b1}, ..., \theta_{bq}) = (\theta_1, ..., \theta_q) = \theta.$$

Suppose we have a sample of size n from the first population and a sample of the same size n from the second population. Assume that the samples are independent. Let N_{1j} be the number of times the j-th outcome occurs in the sample from the first population and let N_{2j} be the number of times the j-th

outcome occurs in the sample from the second population , j=1,...,k. Then an appropriate statistic is

$$\chi_{n}^{2} = \sum_{j=1}^{k} \frac{n\left(\pi_{j}\left(\widehat{\boldsymbol{\theta}}_{na}\right) - \pi_{j}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\right)^{2}}{\pi_{j}\left(\widehat{\boldsymbol{\theta}}_{n}\right)} + \sum_{j=1}^{k} \frac{n\left(\pi_{j}\left(\widehat{\boldsymbol{\theta}}_{nb}\right) - \pi_{j}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\right)^{2}}{\pi_{j}\left(\widehat{\boldsymbol{\theta}}_{n}\right)}$$

where $\widehat{\boldsymbol{\theta}}_{na}$ is an asymptotic MLE of $\boldsymbol{\theta}_a$ (based on $N_{11},...,N_{1k}$), $\widehat{\boldsymbol{\theta}}_{nb}$ is an asymptotic MLE of $\boldsymbol{\theta}_b$ (based on $N_{21},...,N_{2k}$) and $\widehat{\boldsymbol{\theta}}_n$ is an asymptotic MLE of $\boldsymbol{\theta}$ under the null hypothesis (which will be based both on $N_{11},...,N_{1k}$ and $N_{21},...,N_{2k}$.)

Show that the χ_n^2 has the asymptotic $\chi^2(l)$ distribution with l=q+q-q=q degrees of freedom.

(Here you may use the fact that if $\mathbf{V}_1 \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{k_1} - \phi_1 \phi_1'\right)$ and $\mathbf{V}_2 \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{k_2} - \phi_2 \phi_2'\right)$ with \mathbf{V}_1 and \mathbf{V}_2 independent, where $\phi_1 = \left(\sqrt{\pi_{11}}, ..., \sqrt{\pi_{1k}}\right)'$, $\phi_2 = \left(\sqrt{\pi_{21}}, ..., \sqrt{\pi_{2k}}\right)'$, then, letting $\mathbf{V} = \left(\mathbf{V}_1' : \mathbf{V}_2'\right)'$, the quadratic $\mathbf{V}'\mathbf{C}\mathbf{V} \sim \chi^2\left(l\right)$ under suitable conditions on \mathbf{C} .)

3. Let $(X_1, ..., X_n)$ be a random sample from the population with cumulative distribution function F(x). Assume that F(x) is continuous in x. Let

$$F_n\left(x\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\left(-\infty, x\right]}\left(X_i\right)$$

be the empirical cumulative distribution function based on the sample $(X_1, ..., X_n)$.

(a) Show that $\sup_{-\infty < x < \infty} |F_n(x) - F(x)| \stackrel{p}{\to} 0$.

(b) Let $(\eta(t); 0 \le t \le 1)$ be a Brownian Bridge, that is, a Gaussian process such that

$$E[\eta(t)] = 0$$
 for all $0 \le t \le 1$

and

$$E[\eta(s)\eta(t)] = \min\{t, s\} - ts$$
 for all $0 \le s, t < 1$.

Show that the process $(\sqrt{n} (F_n(x) - F(x)); -\infty < x < \infty)$ converges in distribution to the Gaussian process $(\eta(F(x)); -\infty < x < \infty)$, in the sense that for every finite $-\infty < x_1 < \ldots < x_k < \infty$, the random vector

$$\left(\sqrt{n}\left(F_{n}\left(x_{i}\right)-F\left(x_{i}\right)\right);\ i=1,...,k\right)\Longrightarrow\left(\eta\left(F\left(x_{i}\right)\right);\ i=1,...,k\right).$$

$$S = \left\{ \frac{j}{2^l}, j = 0, 1, ..., 2^l, \ l = 0, 1, ... \right\}.$$

For a given random process $(H(t), 0 \le t \le 1)$, suppose you are given that, for every positive integers $m < m_0$,

$$\begin{aligned} &\sup_{|t-s| \leq \frac{1}{2^m}, \ t, s \in S} \left| H\left(t\right) - H\left(s\right) \right| \\ \leq & 2 \sum_{l=m+1}^{m_0} \sup_{0 \leq q < 2^l} \left| H\left(\frac{q+1}{2^l}\right) - H\left(\frac{q}{2^l}\right) \right| + 2 \sup_{|u-v| \leq \frac{1}{2^{m_0}}, \ t, s \in S} \left| H\left(u\right) - H\left(v\right) \right|. \end{aligned}$$

Then show that

$$\lim_{\delta \to 0} \ \limsup_{n \to \infty} P \left[\sup_{|t-s| \leq \delta} \left| \eta_n \left(t \right) - \eta_n \left(s \right) \right| > \tau \right] = 0 \quad \text{ for all } \tau > 0,$$

where

$$\eta_{n}\left(t\right)=\sqrt{n}\left(F_{n}^{*}\left(t\right)-t\right),\quad,0\leq t\leq1,$$

with $F_n^*(t)$ the empirical distribution function corresponding to a sample from the uniform distribution over the interval (0,1).

5. Let $X_1, ..., X_n$ be i.i.d. with the probability density function f(x). Assume that the distribution of X_1 is symmetric around 0, that is, f(x) = f(-x) for all x.

Let $R_1^+, ..., R_n^+$ be the ranks of $|X_1|, ..., |X_n|$.

Show that the vectors $(\operatorname{sign}(X_1), ..., \operatorname{sign}(X_n))$ and $(R_1^+, ..., R_n^+)$ are independent.

Show that the Wilcoxon statistic $a_n^{-1} \sum_{i=0}^n R_i^+ \operatorname{sign}(X_i)$ converges in distribution to the standard normal distribution, where $a_n^2 = \sum_{k=1}^n k^2$.

6. Let $(X_1, ..., X_n)$ be an i.i.d. sample from a population with cumulative distribution function F(x). Let ξ_p be the population p-th quantile and let $\widehat{\xi}_{np}$ be the corresponding sample p-th quantile, 0 . Assume that <math>F(x) is continuously differentiable in the neighborhood of ξ_p .

Show that

$$\sqrt{n}\left(\widehat{\xi}_{np} - \xi_p\right) - \frac{1}{f\left(\xi_p\right)}\sqrt{n}\left(p - F_n\left(\xi_p\right)\right) \stackrel{p}{\to} 0,$$

where $f(x) = \frac{dF(x)}{dx}$. (If you use any general result from which you obtain this result, then you will have to state and prove that result.)